
Lights Out

Adrienne F. Olson

April 16, 2007



Copyright c© 2007 Adrienne F. Olson.
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version

published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in

the section entitled “GNU Free Documentation License”.



The Game

Lights Out is a game that consists of a 5×5 grid of buttons that light up. The light of
each button can be turned on or off by pressing it. If a button is pressed, though, it
changes the status of the four buttons adjacent to it as well. If the button is pressed
and a neighboring button is off, that neighbor will be turned on, and if the neighbor
is on it will be turned off. The goal of the game is to turn off all of the lights in the
grid.

Note that because buttons can only be on or off and the pattern of the change
in states of adjacent buttons is constant, if a button is pushed twice (or any even
number of times, for that matter), the pattern of lit and unlit buttons remains the
same as it was before the button was pushed. It is as if the button was never pushed
in the first place. Since each button has only two states, all of our arithmetic will be
done in the scalar field Z2.

Also note that because the status of a button depends solely on what state it was
in to begin with and how many times it and its neighbors have been pressed, it does
not matter in which order buttons are pressed.

Pattern and Change Vectors

We start with the grid set up in a certain pattern of buttons on and off. Let’s turn
this grid into a vector of 25 elements. Each element represents one of the buttons.
Let’s represent a button that’s off as 0 and a lit button as 1. Let’s label the buttons
as the following:

g
1,1

 

g
1,2

g
1,3

g
1,4

g
1,5

g
2,1

g
2,2

g
2,3

g
2,4

g
2,5

g
3,1

g
3,2

g
3,3

g
3,4

g
3,5

g
4,1

g
4,2

g
4,3

g
4,4

g
4,5

g
5,1

g
5,2

g
5,3

g
5,4

g
5,5

.

2



So we have the representative vector

g =



g1,1

g1,2
...

g1,5

g2,1
...

g5,5


.

Now we can represent the change that occurs when a button is pressed as a vector.
Let’s have a button that does not change represented by 0 and one that changes status
represented by 1. So our vector of change is

c =



c1,1

c1,2
...

c1,5

c2,1
...

c5,5


.

The result of the button press is then the addition of the two vectors in the scalar
field Z2,

n = g + c =



g1,1 + c1,1

g1,2 + c1,2
...

g1,5 + c1,5

g2,1 + c2,1
...

g5,5 + c5,5


,

and this is now our new grid pattern.

3



Example 1: A grid and its pattern and change vectors

Say we begin with a grid that looks like

where a shaded box represents a light that is on and an unshaded box represents a
light that is off.

So we have

g =
[
1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0

]t
.

Let’s say we push button g3,4 on this grid. Then the change vector is

c =
[
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0

]t
.

When we add g and c in mod 2 we get

n = g + c =
[
1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0

]t
,

which gives us the new grid pattern of

.

Because addition is commutative, we can add vectors in any order and get the
same result. Therefore we can press buttons in any order and end up with the same
grid pattern.

The Strategy Vector

Let our button-pressing strategy be represented by the vector s where si,j is equal to
1 if button (i, j) is the button we push and 0 if we leave it alone. In this paper, the
strategy vector may sometimes also be called the solution vector.

4



Example 2: A strategy vector

In Example 1 above, where we press button g3,4, the strategy is represented by

s =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

]t
.

A Matrix of Change Vectors

Now, in order to simplify our manipulation of the buttons of the grid we will build
the matrix whose columns are all the possible change vectors. In order to create this
matrix easily and to be sure we find every change vector, we’ll name each button in
this way:

1 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

2

.

We are going to build the 25×25 matrix A which will represent what each button
does to the rest of the lights on the grid. Let ai,j be 1 if light i is changed by button
j, and 0 otherwise. Here is A:

5



A =



1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1



.

In order to simplify this matrix, we can see that

A =


B I O O O
I B I O O
O I B I O
O O I B I
O O O I B

 ,

where I is the 5× 5 identity matrix, O is the 5× 5 zero matrix, and

B =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 .

Since B is a symmetric matrix, A is symmetric as well.

6



Finding a Strategy that Solves a Grid Pattern

Say we begin with grid pattern g. Then g is solvable if there exists a strategy s that
turns off all the lights in g (that turns g into the zero vector). Also note that if a
set of buttons is pushed to create a grid pattern, then starting with that grid pattern
and pressing the same set of buttons will turn the lights off.

To find a strategy to turn off all the lights in g, we need to solve g = As. So grid
pattern g is only solvable if and only if it belongs to the column space of matrix A,
C(A).

In order to find C(A), we can put matrix A into reduced-row echelon form using
Gauss-Jordan elimination in mod 2. When we augment A with the 25× 25 identity
matrix and row reduce, we get RA = E where R is the elementary matrix of size 25
that produces the row operations that row-reduce matrix A, and E is the matrix in
reduced-row echelon form. Here are R and E:

R =



0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0
0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0
0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0
1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0
1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0
0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0
1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0
0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0
0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0
0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0
1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0
0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0
0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0
1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1



7



E =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


We can now see that C(A) is equal to the span of the column vectors that form

the matrix E. Note that in matrix E there are 5 rows that contain only a single 1,
so there are only 5 lights that can be turned on or off individually. Also, if we add
the rows of E together, we will get 23 ones. The last two columns of E also add to
ones. This shows that it is possible to switch on all the lights. To do so, we find the
strategy given by the sum of all the rows of matrix R.

Gauss-Jordan elimination gives us E, which is in reduced-row echelon form. We
find that the matrix E has rank 23 with 2 free variables, s5,4 and s5,5. The last two
columns of E are[

0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0
]t

and[
1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0

]t
.

Note that A is a symmetric matrix, so the column space of A is equal to the row
space of A, C(A) = R(A). But R(A) is the orthogonal complement of the null space
of A, N (A), which is equal to N (E). So to find C(A), we simply need to find a basis

8



for N (E). We can find an orthogonal basis for N (E) by looking at the last 2 columns
of E. The vectors in our orthogonal basis for N (E) are as follows:

m1 =
[
0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0

]t

and

m2 =
[
1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1

]t
.

Since m1 and m2 are vectors in the basis of N (E), when we press the buttons
indicated in these vectors or the sum of these vectors, we end up with the same grid
pattern that we began with.

Solvable Grid Patterns

A grid pattern g is solvable only if g is orthogonal to the two vectors m1 and m2. To
find out if a pattern is solvable, find the inner product of that pattern with m1 and
m2. We can see that there are 225 possible grid patterns since there are 25 lights and 2
possible states for each light. We also know the nullity of E, n(E) =dim(N (E)) = 2,
and since we are working in the Z2 scalar field, we can see that out of the 225 possible
patterns, one-fourth of them are solvable.

Example 3: A solvable pattern vector

Say we have a pattern vector

f =
[
0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0

]t
.

In mod 2 〈f ,m1〉 = 0 and 〈f ,m2〉 = 0, which shows that f is orthogonal to both m1

and m2, and therefore it is a solvable pattern.

Example 4: An unsolvable pattern vector

Say we have a pattern vector

h =
[
1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0

]t
.

In mod 2 〈h,m1〉 = 0 and 〈h,m2〉 = 1, which shows that h is orthogonal to m1, but
it is not orthogonal to m2, so it is not a solvable pattern, and there is no solution
vector that will take h to 0.

If g is a solvable pattern with the winning strategy s, then s + m1, s + m2, and
s + m1 + m2 are also winning strategies, since s ∈ N (E) where N (E) = 〈{m1,m2}〉.

Multiple Strategies

Now suppose that g is a solvable pattern. We want to find one of the four strategies
s for which As = g. Since we only need one solution, we will let s5,4 and s5,5 equal
zero. In this case s = Es. so s = Es = RAs = Rg. So we have a strategy given by
s = Rg. Suppose that g is a solvable pattern. Then the four winning strategies for g
are Rg, Rg + m1, Rg + m2, and Rg + m1 + m2.

9



Example 5: Find a winning strategy

Let’s take our previous solvable pattern vector from Example 3. To find a winning
strategy, we compute

s = Rf =
[
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0

]t
.

So if we press buttons f2,2, f2,4, f3,3, f4,2, f4,4, f5,1, and f5,3 we can turn off all the
lights in the grid. If we want to minimize the number of button presses, we can
calculate s+m1, s+m2, and s+m1 +m2 as well, and we can find the strategy with
the minimum presses.

Now we know how to solve any (solvable) grid pattern!

Example 6: Finding a solution to our first puzzle

Let’s find the solution to the pattern vector g that we have been working with through-
out our discussion. We have our vector

g =
[
1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0

]t
.

We find

s = Rg =
[
0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0

]t
,

which has 14 button presses. We also find that

s + m1 =
[
0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0

]t
,

which has 14 button presses. We calculate

s + m2 =
[
1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1

]t
,

and

s + m1 + m2 =
[
1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 1

]t
,

which each have 16 button presses, so we see that s and s+m1 both solve the puzzle
in the minimum number of presses.

Checking the Solution

In order to check that these solutions truly work, we multiply each of our four solution
vectors with matrix A, and we should end up with our original pattern vector.

As = A(s + m1) = A(s + m2) = A(s + m1 + m2) = g.

Since we found s for the equation As = g, we should find that As + g = 0, because
we are working in mod 2, and this gives us our new pattern vector with all the lights
turned off.

10



A Simple Algorithm

Now that we know how to calculate the solution strategy, we’ll use a much simpler,
algorithmic way to solve the game. Say we only compute the strategy for the first row
of our grid (the first five entries in column Rg). We will take the first five entries in
column g and multiply them with the 5× 5 matrix composed of the first five entries
in the first five rows and first five columns of matrix R, which we will call R′. We can
also find R′ by creating the 5×5 matrix whose columns are the change vectors for the
first row of buttons, A′. We can then row-reduce A′, and R′ will be the elementary
matrix that produces the row operations that put A′ into reduced-row echelon form.
We will call our shortened pattern vector g′.

Example 7: Finding the strategy vector for the first row

g′ =


1
0
0
0
1

 and A′ =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 .

R′ =


0 1 1 1 0
1 1 0 1 1
1 0 1 1 1
1 1 1 0 0
0 1 1 0 1

 and R′A′ = E ′ =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0

 .

We find

s′ = R′g′ =


0
0
1
1
1

 .

Now we perform these moves on the first row. We have already established that
each button only needs to be pressed once, so we know that no more moves in the
first row are necessary. Now we check to see if any lights are still on in the first row.
The only way to turn these off without pushing buttons in the first row is to push the
buttons in the second row right below those that are still on. Then we do the same
for the next rows, and we end up with all the lights turned off.

Alternate Versions of Lights Out

Lit buttons only

There is a version of Lights Out where, when solving the puzzle, only lit buttons may
be pressed. It is possible to turn off all of the lights on a solvable grid pattern by doing

11



this, though a few more buttons may have to be pressed. Once the strategy vector is
found, we can press the buttons indicated by the strategy vector that are already lit
on our game board. We keep doing this, pressing each button in our strategy vector
only once, until the rest of the buttons in the strategy are unlit. If a lit button, x is
adjacent to one that is unlit but is in our strategy, w, we can press the combination
x, w, x. This has the same effect as pressing w alone, but it overcomes the hindrance
of x being unlit. By doing this with every unlit solution button and one of its lit
neighbors, we can eventually come to a pattern where the remaining buttons in our
solution are all lit.

3-State Game

There are some versions of Lights Out that allow us to play the game in which each
button has three different states - off and two different colors. When we press a
button that is unlit, it turns on and becomes one color, and when we press it again it
becomes another color. When we press it a third time, it turns off again. Similarly,
the pressing of one button advances each neighboring button to its next state in the
sequence. In this game, we are working in mod 3 with the scalar field of Z3.

Lights Out on an n×n Grid

When we find the solution to an n × n puzzle, we will be creating n × 1 pattern
vectors, change vectors, and solution vectors, and our matrix formed by all possible
change vectors (matrix A in this case) will be a square matrix of size n2. For each grid
size, we will have a different null space of A, creating a different basis and a different
number of possible solutions. In some cases, such as the case of a 6×6, 7×7, or 8×8
grid, N (A) = 0 because A is nonsingular. In these cases, since there are no dependent
variables and since the basis of A is simply the span of the set of n standard unit
column vectors, every possible grid pattern is solvable, and each solution, as long as
no button is pressed more than once, is unique.

Lights Out on a Torus

Lights Out can be played in such a way that the buttons of the top row are adjacent
to those of the bottom row, and the buttons of the left column are neighbors with
those in the right column. In order to solve this puzzle, we change matrix A to reflect
this property, and we find our strategy vector in the same manner as before.

Lights Out on an n×n Torus

This game is a combination of Lights Out on an n×n grid and Lights Out on a torus.
In this case, the change vectors reflect the torus property of the grid, and the n2×n2

matrix A is formed with these new change vectors. The number of possible strategy
vectors is again determined by N (A).

12



Bibliography

[1] Anderson, Marlow and Todd Feil, “Turning Lights Out with Linear Algebra,”
Mathematics Magazine, 71(4), (October 1998): 300–303.

[2] Beezer, Robert A. A First Course in Linear Algebra, (Tacoma, WA: Department
of Mathematics and Computer Science, University of Puget Sound, 2006).

[3] Chen, William Y.C. and Nancy S.S. Gu, “Loop Detection for the Lamp Lighting
Problem,” (Tianjin, People’s Republic of China: Nankai University).

[4] Goldwasser, John and William Klostermeyer, “Maximiza-
tion Versions of ’Lights Out’ Games in Grids and Graphs,”
http://citeseer.ist.psu.edu/goldwasser98maximization.html.

[5] Goldwasser, John and William Klostermeyer, “Parity Dominating Sets in Grid
Graphs,” (2005) http://www.unf.edu/ wkloster/fibonacci/parity.pdf.

[6] Goldwasser, John and William Klostermeyer, “Odd and Even Dom-
inating Sets with Open Neighborhoods,” http://www.unf.edu/ wk-
loster/fibonacci/arsfinal.pdf.

[7] Scherphuis, Jaap, “The Mathematics of Lights Out,”
http://www.geocities.com/jaapsch/puzzles.

13


